Hyperoxia inhibits protein synthesis and increases eIF2α phosphorylation in the newborn rat lung.

نویسندگان

  • Wesley Konsavage
  • Lianqin Zhang
  • Thomas Vary
  • Jeffrey S Shenberger
چکیده

Prolonged exposure to hyperoxia contributes to aberrant lung growth in premature infants. Of the deleterious effects induced by hyperoxia, alterations in protein synthesis are likely to be of great importance to the developing lung. Regulation of mRNA translation occurs predominantly at the level of initiation via control of mRNA/ribosome binding by proteins known as eukaryotic initiation factors (eIF). Although hyperoxia is known to suppress mRNA translation in adult lungs, little is known regarding the effects in newborns or the involved mechanism. This study was performed to determine the effect of exposure to 95% O(2) on pulmonary protein synthesis in 4-day-old Sprague-Dawley rat pups. We found that hyperoxia suppressed the incorporation of [(3)H]phenylalanine into lung protein over time, resulting in a 23% reduction after 72 h compared with pups reared in room air. This effect was preceded by a shift in total lung RNA to lower order polysomes. Hyperoxia increased eIF4G-eIF4E binding, a surrogate maker of eIF4F complex assembly, and initially activated, then suppressed, the phosphorylation of ribosomal S6 kinase 1 and ribosomal S6 protein, downstream targets of mammalian target of rapamycin. Exposure to 95% O(2) enhanced the phosphorylation of the translational repressor eIF2α in whole lung extracts and the immunoreactivity of phosphorylated eIF2α in epithelial cells. Cell culture studies further demonstrated that hyperoxia increases eIF2α phosphorylation in lung epithelial cells, but not in lung fibroblasts. These findings illustrate that hyperoxia-induced suppression of mRNA translation in the newborn lung is accompanied by increased phosphorylation of eIF2α in the epithelium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperoxia-induced activation of the integrated stress response in the newborn rat lung.

Diverse environmental stresses stimulate eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, leading to a stress-resistant state characterized by global attenuation of protein synthesis and induction of cytoprotective genes. The signal transduction network culminating in these effects is referred to as the integrated stress response (ISR) or, when initiated by misfolded protein...

متن کامل

Asiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo

Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...

متن کامل

PKR-dependent CHOP induction limits hyperoxia-induced lung injury.

Supplemental O(2) is commonly employed in patients with respiratory failure; however, hyperoxia is also a potential contributor to lung injury. In animal models, hyperoxia causes oxidative stress in the lungs, resulting in increased inflammation, edema, and permeability. We hypothesized that oxidative stress from prolonged hyperoxia leads to endoplasmic reticulum (ER) stress, resulting in activ...

متن کامل

Hyperoxia increases protein mass of 5-lipoxygenase and its activating protein, flap, and leukotriene B(4) output in newborn rat lungs.

In this study, the authors examined in newborn rat lung tissues the release of leukotriene B(4) (LTB(4)) from tissue explants in vitro, the protein expression of the LT-synthesizing enzyme, 5-lipoxygenase (5-LO), and its activating protein (FLAP), and the effects of in vivo hyperoxic exposure (>95% O(2)) on these parameters. Basal LTB(4) output increased from 0.98 ng/mgDNA/30 min at day 1 to 3....

متن کامل

Effects of hyperoxia on VEGF, its receptors, and HIF-2 in the newborn rat lung

Hosford, Gayle E., and David M. Olson. Effects of hyperoxia on VEGF, its receptors, and HIF-2 in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 285: L161–L168, 2003. First published March 7, 2003; 10.1152/ ajplung.00285.2002.—Signaling through the hypoxia inducible factor (HIF)-VEGF-VEGF receptor system (VEGF signaling system) leads to angiogenesis and epithelial cell proliferation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 298 5  شماره 

صفحات  -

تاریخ انتشار 2010